Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(1): 199-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37751848

RESUMO

BACKGROUND: Cancer-associated thrombosis is a frequent complication in patients with malignancies. While factor XI (FXI)/FXIa inhibition is efficacious in preventing postoperative venous thromboembolism, its role in tumor cell-induced coagulation is less defined. OBJECTIVES: We thus aimed to provide mechanistic insights into FXI/FXIa inhibition in tumor cell-induced coagulation activation. METHODS: Procoagulant activity (PCA) of 4 different tissue factor (TF) expressing tumor cell lines was analyzed by single-stage clotting and thrombin generation assay in the presence of a FXIa inhibitor, BMS-262084 (BMS), an inhibitory FXI antibody (anti-FXI), or peak and trough concentrations of rivaroxaban or tinzaparin. Further, tumor cell-induced platelet aggregation was recorded. Recombinant human TF served as positive control. RESULTS: Although BMS and anti-FXI potently inhibited FXIa amidolytic activity, both inhibitors efficiently mitigated recombinant human TF- and tumor cell-induced fibrin clot formation and platelet aggregation only in the presence of low TF PCA. The anticoagulant effects showed an inverse correlation with the magnitude of cellular TF PCA expression. Similarly, BMS markedly interfered with tumor cell-induced thrombin generation, with the most prominent effects on peak and total thrombin. In addition, anticoagulant effects of FXIa inhibition by 10 µM BMS were in a similar range to those obtained by 600 nM rivaroxaban and 1.6 µM tinzaparin at low TF PCA levels. However, rivaroxaban and tinzaparin also exerted marked anticoagulant activity at high TF PCA levels. CONCLUSION: Our findings indicate that FXI/FXIa inhibition interferes with tumor cell-induced coagulation activation only at low TF PCA expression levels, a finding with potential implications for future in vivo studies.


Assuntos
Fator XI , Neoplasias , Humanos , Fator XI/metabolismo , Rivaroxabana , Tinzaparina , Trombina/metabolismo , Tromboplastina/metabolismo , Anticoagulantes/farmacologia , Neoplasias/tratamento farmacológico , Fator XIa/metabolismo
2.
Thromb Res ; 229: 155-163, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473552

RESUMO

INTRODUCTION: Patients with acute myeloid leukemia (AML) are at increased risk of thrombohemorrhagic complications. Overexpressed tissue factor (TF) on AML blasts contributes to systemic coagulation activation. We have recently shown that the heme enzyme myeloperoxidase (MPO) negatively regulates TF procoagulant activity (PCA) on myelomonocytic cells in vitro. We now aimed to further characterize the functional interaction of MPO and TF in AML in vivo. METHODS: We prospectively recruited 66 patients with newly diagnosed AML. TF PCA of isolated peripheral blood mononuclear cells (PBMC) was assessed by single-stage clotting assay in the presence or absence of inhibitors against MPO catalytic activity (ABAH) or against MPO-binding integrins (anti-CD18). MPO in plasma and in AML blasts was measured by ELISA, and plasma D-dimers and prothrombin fragment F1+2 were quantified by automated immunoturbidimetric and chemiluminescence assays, respectively. RESULTS: Patients with AML had significantly higher MPO plasma levels compared to healthy controls and exhibited increased levels of D-dimers and F1+2. In vivo thrombin generation was mediated by TF PCA on circulating PBMC. Ex vivo incubation of isolated PBMC with ABAH or anti-CD18 antibody resulted in either increased or decreased TF PCA. The strong and robust correlation of F1+2 with TF PCA of circulating PBMC was abrogated at MPO plasma levels higher than 150 ng/mL, indicating a modulatory role for MPO on TF-mediated in vivo thrombin generation above this threshold. CONCLUSION: Our study indicates that catalytically active MPO released by circulating myeloblasts regulates TF-dependent coagulation in patients with newly diagnosed AML in a CD18-dependent manner.


Assuntos
Leucemia Mieloide Aguda , Trombina , Humanos , Peroxidase , Leucócitos Mononucleares , Coagulação Sanguínea , Tromboplastina
3.
Thromb Res ; 220: 48-59, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265413

RESUMO

INTRODUCTION: Protein disulfide isomerase (PDI) contributes to tissue factor (TF) regulation in monocytes. While bacitracin and quercetin-3-rutinoside mitigate myeloid TF production, the effect of PACMA-31, a more specific PDI inhibitor with distinct pharmacologic properties, remains unclear. MATERIALS AND METHODS: Lipopolysaccharide (LPS) stimulation of peripheral blood mononuclear cells (PBMCs) or citrate-anticoagulated whole blood was carried out in the presence of PACMA-31 or DMSO vehicle before monocytes were analyzed for TF expression, including antigen, procoagulant activity (PCA) and mRNA, release of IL-6 and TNFα, and LPS-induced signaling pathways. RESULTS: While PACMA-31 alone had no effect, coincubation with LPS and PACMA-31 (25 µM) enhanced LPS-induced monocyte TF production in whole blood. The effect was at least partially regulated on the transcriptional level and could not be explained by increased phosphatidylserine membrane exposure. In contrast, the same PACMA-31 concentrations were cytotoxic in isolated PBMCs. A lower dose of PACMA-31, however, restored the stimulating effect by enhancing IκB-NFκB signaling that also increased the release of IL-6 and TNFα. The protease-activated receptor 2 (PAR2) inhibitor ENMD547 but not TF antibody 10H10 or factor Xa inhibitor rivaroxaban prevented the stimulatory effect of PACMA-31 on inflammatory monocytes. In sharp contrast, short time incubation of LPS-stimulated PBMCs with 25 µM PACMA-31 was non-cytotoxic and significantly inhibited cellular TF PCA but not surface antigen expression. CONCLUSIONS: PACMA-31 regulates monocyte TF in a concentration-dependent manner by opposing transcriptional and posttranscriptional mechanisms. While low concentrations of PACMA-31 augment monocyte TF production by amplifying LPS-dependent PAR2 signaling, high concentrations convert monocyte TF into its non-coagulant state.


Assuntos
Monócitos , Tromboplastina , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo , Monócitos/metabolismo , Isomerases de Dissulfetos de Proteínas , Fator de Necrose Tumoral alfa/metabolismo , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia
4.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439096

RESUMO

Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.

5.
Thromb Haemost ; 117(12): 2300-2311, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29212118

RESUMO

Myeloperoxidase (MPO) is a cationic heme enzyme stored in neutrophilic polymorphonuclear leukocytes (PMNs) that has recently been implicated in inflammatory cell signaling and tissue damage. Although PMNs play a critical role in both innate immunity and vascular thrombosis, no previous study has systematically investigated the effect of MPO on blood coagulation. Here, we show that PMN-derived MPO inhibits the procoagulant activity (PCA) of lipidated recombinant human tissue factor (rhTF) in a time- and concentration-dependent manner that involves, but is not entirely dependent on the enzyme's catalytic activity. Similarly, MPO together with its substrate, H2O2, inhibited the PCA of plasma microvesicles isolated from lipopolysaccharide (LPS)-stimulated whole blood, an effect additive to that of a function blocking TF antibody. Treatment of whole blood with LPS or phorbol-myristate-acetate dramatically increased MPO plasma levels, and co-incubation with 4-ABAH, a specific MPO inhibitor, significantly enhanced the PCA in plasma supernatants. MPO and MPO/H2O2 also inhibited the PCA of activated platelets and purified phospholipids (PLs), suggesting that modulation of negatively charged PLs, i.e., phosphatidylserine, rather than direct interference with the TF/FVIIa initiation complex was involved. Consistently, pretreatment of activated platelets with MPO or MPO/H2O2 attenuated the subsequent binding of lactadherin, which specifically recognizes procoagulant PS on cell membranes. Finally, endogenously released MPO regulated the PCA of THP1 cells in an autocrine manner dependent on the binding to CD11b/CD18 integrins. Collectively, these findings indicate that MPO is a negative regulator of PL-dependent coagulation and suggest a more complex role of activated PMNs in haemostasis and thrombosis.


Assuntos
Neutrófilos/fisiologia , Peroxidase/metabolismo , Trombose/metabolismo , Coagulação Sanguínea , Fator VIIa/metabolismo , Células HL-60 , Humanos , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Vesículas Secretórias/metabolismo , Células THP-1 , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...